EDITING : 2017.12.7 목 01:57
The Gachon Herald
Scientists are about to change what a kilogram is. That’s massive.
g.herald  |  g.herald1984@gmail.com
폰트키우기 폰트줄이기 프린트하기 메일보내기 신고하기
Updated : 2017.11.21  10:11:19
트위터 페이스북 미투데이 요즘 네이버 구글 msn

 If Jon Pratt were an international criminal 1)mastermind, he would fly to Paris, 2)don an all-black suit and ski mask and 3)sneak into the elegant French baroque building that serves as 4)headquarters for the Bureau International des Poids et Mesures. His mission: “To set the whole world’s system of mass into 5)disarray,” Pratt said. “This is my 6)dastardly plan.” In this 7)hypothetical scenario, Pratt 8)slips past the security guards, disables the alarm system and picks the lock on a temperature-controlled, 9)airtight safe deep in the bowels of the 10)BIPM. Inside, he finds his target: a small platinum and iridium cylinder weighing exactly one kilogram. It's the kilogram, crafted in 1889 to serve as the single standard by which all other kilograms are measured. People call it “le grand K.”
 “I'd take out a nail file, and I'd scratch a little bit off,” Pratt said. Then he'd slip back into the night. “And the next time they take the thing out” (to test the accuracy of the world's other kilograms) “everything else will be wrong.” But Pratt is not a criminal mastermind. He's a 11)public servant, the chief of quantum measurement at the National Institute of Standards and Technology, which 12)oversees weights and measures in the United States. And he doesn't want to tamper with the global system of mass. He wants to revolutionize it.
 Pratt and his colleagues at NIST are part of an international effort to redefine the kilogram based on a fundamental universal constant — a physical quantity in nature, like the speed of light or the electric charge of a proton, that never changes 13)regardless of when and where you are. And on Friday, the NIST team got their most precise measurement ever for this constant. “It's not obvious that it's a big deal, but it’s a big deal,” Pratt said. With this new measurement, “we could switch from a 19th-century definition of mass to a more 21st- or 22nd-century definition of mass. We could get it based on an idea more than an object. And that’s just beautiful, and I’m proud of our species for getting to this place.”
 Here's the problem with the current standard kilogram: It's losing weight. It now is ever-so-slightly lighter than the once-identical “witness” cylinders stored in labs around the world. Scientists don't know whether the BIPM prototype is losing mass, perhaps because of loss of 14)impurities in the metals, or if the witnesses are gaining mass by 15)accumulating 16)contaminants.
Either way, the whole thing is a “huge inconvenience,” Pratt said. Several years ago, NIST had to reissue certificates for its kilograms because they were 45 micrograms off the French prototype — about the weight of an 17)eyelash. This meant that companies that produce weights based on the NIST standards had to reissue their own weights, and they were not happy about it. Lawmakers were called. NIST 18)was accused of being 19)incompetent. In the end, it turned out that the problem 20)stemmed from le grand K, not NIST.
 If that seems like a lot of uproar over an 21)infinitesimal change in the mass of an object, consider this: The effectiveness of filters on diesel engines is determined by measuring the mass of the soot they capture — in micrograms. “There’s a lot that rides on these sorts of things that people 22)take for granted,” Pratt said. “Like breathing.” Scientists agree it's long past time to retire le grand K. Using this 19th-century technology for 21st-century physics is like trying to get to Mars on a rocket powered by a steam engine. It just isn't going to work. So in 2014, at the 23)quadrennial General Conference on Weights and Measures (yep, that's a thing), the scientific community resolved to redefine the kilogram based on Planck's constant, a value from quantum mechanics that describes the packets energy comes in. If physicists could get a good enough measure of Planck's constant, the committee would calculate a kilogram from that value. “But it's a very difficult constant to measure,” Pratt said. He would know: He and his colleagues at NIST have spent much of the past few years trying to come up with a number accurate and precise enough to please the
24)finicky physics community. They're using a tool called a Kibble balance. Instead of balancing the scale with weights, Pratt and his colleagues use electromagnetism. An electrical current is sent through a coiled wire, generating a magnetic field that creates the upward force needed to balance the scale. Scientists can 25)figure out the strength of that field by pulling on the coil. If you know the voltage, the current and the 26)velocity at which the coil was pulled, you can calculate the Planck constant with extreme precision.
 On June 30, the day before the deadline to submit a value to the weights and measures committee, the team at NIST was finally ready to release its result. Based on 16 months' worth of measurements, it calculated Planck's constant to be 6.626069934 x 10−34 kg∙m2/s. Don't be alarmed by this small, strange number. The most important thing about the NIST measurement 27)isn't so much the number (though that's also a big deal) as the uncertainty: just 13 parts per billion. This means that the NIST scientists think their measurement of Planck's constant is within 0.0000013 percent of the correct number. When the International Committee for Weights and Measures announced that it would reconsider the kilogram definition, it said it would require three measurements with uncertainties below 50 parts per billion, and one below 20 ppb. But with the new NIST measurement, the world now has at least three experiments below 20 ppb — another was conducted by a Canadian team using a Kibble balance, the third by an international group that calculates the Planck constant based on the number of atoms in a sphere of pure silicon.
 The weights and measures committee will meet this month to establish a global value for Planck's constant by averaging the values calculated at NIST and other labs. And in 2018, at the next General Conference on Weights and Measures, the scientific community will draft a resolution to redefine kilogram based on this constant. “I can’t stress enough how impressed I am at humanity for being able to pull this stuff off,” Pratt said. We're lucky Pratt decided to use his powers for good instead of evil. These are weighty matters.

By
Published:2017-07-05
Source: The Washington Post

<Words & Expressions>

1. mastermind: [뛰어난 두뇌로 흔히 범죄가 관련되는 복잡한 일을 계획하고] 지휘[조종]하는 사람
2. don: [옷•모자 등을] 입다, 쓰다
3. sneak into: ~에 몰래 들어가다
4. headquarters: 본사[본부]
5. disarray: [상황・장소가] 혼란[스러움]
6. dastardly: 악랄한
7. hypothetical: 가상적인, 가설[가정]의
8. slip past: ~을 슬쩍 통과하다
9. airtight: 밀폐된
10. BIPM: 국제도량형국[Bureau International des Poids et Mesures, International Bureau of Weights and Measures]
11. public servant: 공무원
12. oversee: [작업・활동이 제대로 이뤄지는지] 감독하다
13. regardless of: ~에 상관없이[구애받지 않고]
14. impurity: 불순물
15. accumulate: 축척하다
16. contaminant: 오염 물질
17. eyelash: 속눈썹
18. be accused of: ~로 비난을 받다
19. incompetent: [업무・과제 등에 대해] 무능한[기술이 부족한]
20. stem from: ~에서 생겨나다[기인하다]
21. infinitesimal: 극미한, 극소의
22. take for granted: ~을 당연시하다
23. quadrennial: 4년마다의
24. finicky: 지나치게 까다로운
25. figure out: 계산해내다, 이해하다
26. velocity: 속도
27. not so much A as B: A라기보다는 B인

< Copyright © The Gachon Herald All rights reserved >
g.herald Other Articles More
폰트키우기 폰트줄이기 프린트하기 메일보내기 신고하기
트위터 페이스북 미투데이 요즘 네이버 구글 msn 뒤로가기 위로가기
Comment (0)
Please enter the code for preventing auto-enrollment!   
Send
- Readers can write comments up to 200 words (Current 0 byte / Max 400byte)
Comment (0)
가장 많이 본 기사
1
The annals of the Joseon princesses.
2
How much interest do you have in Korea, your country?
3
Privilege of Youth, RAIL-RO
4
Let’s all enjoy Korean Thanksgiving
5
Way of communication that links people, simultaneous interpreter Lim Mira.
AboutContact UsAdvertisingFAQPrivacy PolicyE-mail address privacy
경기도 성남시 수정구 성남대로 1342 학생회관 315호
Copyright 2011 The Gachon Herald. All rights reserved. mail to webmaster@gachonherald.com